Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

e-Thermal: Automobile Air-Conditioning Module

2004-03-08
2004-01-1509
e-Thermal is a vehicle level thermal analysis tool developed by General Motors to simulate the transient performance of the entire vehicle HVAC and Powertrain cooling system. It is currently in widespread (global) use across GM. This paper discusses the details of the air-conditioning module of e-Thermal. Most of the literature available on transient modeling of the air conditioning systems is based on finite difference approach that require large simulation times. This has been overcome by appropriately modeling the components using Sinda/Fluint. The basic components of automotive air conditioning system, evaporator, condenser, compressor and expansion valve, are parametrically modeled in Sinda/Fluint. For each component, physical characteristics and performance data is collected in form of component data standards. This performance data is used to curve fit parameters that then reproduce the component performance.
Technical Paper

eFMI (FMI for Embedded Systems) in AUTOSAR for Next Generation Automotive Software Development

2021-09-22
2021-26-0048
Nowadays automobiles are getting smart and there is a growing need for the physical behavior to become part of its software. This behavior can be described in a compact form by differential equations obtained from modeling and simulation tools. In the offline simulation domain the Functional Mockup Interface (FMI) [3], a popular standard today supported by many tools, allows to integrate a model with solver (Co-Simulation FMU) into another simulation environment. These models cannot be directly integrated into embedded automotive software due to special restrictions with respect to hard real-time constraints and MISRA compliance. Another architectural restriction is organizing software components according to the AUTOSAR standard which is typically not supported by the physical modeling tools. On the other hand AUTOSAR generating tools do not have the required advanced symbolic and numerical features to process differential equations.
Technical Paper

eFlite Dedicated Hybrid Transmission for Chrysler Pacifica

2018-04-03
2018-01-0396
Electrified powertrains will play a growing role in meeting global fuel consumption and CO2 requirements. In support of this, FCA US has developed its first dedicated hybrid transmission (the eFlite® transmission), used in the Chrysler Pacifica Hybrid. The Chrysler Pacifica is the industry’s first electrified minivan. [2] The new eFlite hybrid transmission architecture optimizes performance, fuel economy, mass, packaging and NVH. The transmission is an electrically variable FWD transaxle with an input split configuration and incorporates two electric motors, both capable of driving in EV mode. The lubrication and cooling system makes use of two pumps, one electrically operated and one mechanically driven. The Chrysler Pacifica has a 16kWh lithium ion battery and a 3.6-liter Pentastar® engine which offers total system power of 260 hp with 84 MPGe, 33 miles of all electric range and 566 miles total driving range. [2] This paper’s focus is on the eFlite transmission.
Technical Paper

iLokTM Nut - An Innovative Fastener that Solves a 30 Year Old Problem for Rear Axle Hub Assemblies

2019-04-02
2019-01-0339
Truck and bus manufacturers have been constantly facing an issue to disassemble the rear axle shaft from the hub when transporting the truck from the factory to the dealership. In addition to that, the dealerships have the very same problem every time they have to replace the brake pads in some truck models, which leads to excessive service time, extra costs and aftermarket complaints. The current problematic fastening system is composed by a lock nut, a flat washer and a coned slotted bushing. The concept of this 30 year old design involves the coned slotted bushing being pressed against a tapered hole on the shaft’s flange. After tightening the lock nut, the bushing clamps towards the stud and it gets stuck in between the shaft and the stud generating the problem described above. This paper shows the R&D process that Tekfor used to come up with the 1-piece fastener named iLokTM nut that replaces the problematic 3-piece fastening system.
Technical Paper

if you squeeze them, must them SCREAM?

1959-01-01
590023
TODAY'S high-compression engines present new problems of engine noise to automotive engineers. This paper deals with some of the factors which contribute to rumble, knock, and surface ignition. The work was primarily concerned with the influence of fuel composition on the equilibrium octane number requirement and surface ignition tendency of high-compression engines. Both the effect of the combustion-chamber deposits formed by the fuel and the effect of the combustion characteristics of the fuel itself were considered. The results indicate that a reduction in gasoline tail-end volatility or the use of an effective ignition control additive can reduce knock, surface ignition, and rumble; while use of gasolines containing high concentrations of aromatic hydrocarbons can increase these combustion difficulties.
Technical Paper

knock-knock: Spark Knock, Wild Ping, or Rumble?

1959-01-01
590019
ENGINE noise has become an increasing problem with the higher and higher compression ratios of present-day automotive engines. Because fuel octane number cannot be raised indefinitely, the problem is one of engine design and selection of crankcase lubricating oils and gasoline formulations, the authors think. This paper describes investigations into the cause of spark knock, wild ping, rumble, and the added problem of hot-spot surface ignition (which also intensifies as compression ratios increase). The authors have found gasolines with phosphorous additives, used with properly formulated multiviscosity lubricating oils, provide a partial answer to the problem of engine rumble. The authors conclude that very exact tailoring of fuels, lubricants, additives, and engines will be necessary to prevent engine noise if compression ratios continue to rise.
Technical Paper

mDSF: Improved Fuel Efficiency, Drivability and Vibrations via Dynamic Skip Fire and Miller Cycle Synergies

2019-04-02
2019-01-0227
mDSF is a novel cylinder deactivation technology developed at Tula Technology, which combines the torque control of Dynamic Skip Fire (DSF) with Miller cycle engines to optimize fuel efficiency at minimal cost. mDSF employs a valvetrain with variable valve lift plus deactivation and novel control algorithms founded on Tula’s proven DSF technology. This allows cylinders to dynamically alternate among 3 potential states: high-charge fire, low-charge fire, and skip (deactivation). The low-charge fire state is achieved through an aggressive Miller cycle with Early Intake Valve Closing (EIVC). The three operating states in mDSF can be used to simultaneously optimize engine efficiency and driveline vibrations. Acceleration performance is retained using the all-cylinder, high-charge firing mode.
Technical Paper

new Fluoroester Lubricants for high-temperature applications

1959-01-01
590062
THE NEED for greater speed in military aircraft and missiles is, without question, the primary force behind the current quest for lubricants of increased thermal and oxidative stability. Turbojet engines soon to be available will require improved lubricants for trouble-free operation. Once developed, these oils may find use in the engines of future civilian aircraft as well as in a variety of special applications. It is the purpose of this paper to discuss the results of an experimental program in the field of high-temperature lubricants. Problems of relating chemical structure to the physical properties and performance of highly fluorinared ester lubricants will be described. Background information in the field of turbojet engine lubrication will be presented.
Technical Paper

p>Thermomechanical Analysis of the Cylinder Head and Cylinder Block with the Liner of AFV Diesel Engine

2011-10-06
2011-28-0118
This paper deals with the Coupled thermo mechanical analysis of a cylinder head, cylinder block and crank case with the liner of an uprated engine. The existing engine develops 780 hp output with mechanical driven supercharger and the engine is uprated to 1000 hp by replacing the supercharger with a turbocharger and new Fuel injection equipment. For uprating any engine, the piston and cylinder head are the most vulnerable members due to increased mechanical and thermal loadings. Mechanical loading is due to the gas pressure in the gas chamber and its magnitude can be judged in terms of peak pressure. Thermal loading is due to temperature and the heat transfer conditions in the piston surface, cylinder liner and the cylinder head. The relative importance of the various loads applied on the head and cylinder block in operation are assessed and a method of predicting their influence on the structural integrity of the components described.
Technical Paper

recent developments make ENGINEERING SPECIFICATIONS more realistic

1959-01-01
590046
SPECIFICATIONS that are realistic for production and result in a product that functions properly can be set with a three-step method evolved from statistical control techniques. The tolerances thus established reduce production costs, as well as costs arising from faulty products, the author states. The author applies the method to a leakage problem encountered on mechanical-hydraulic units. Through the use of statistical control techniques, the cause of the leakage was discovered.
Technical Paper

some metallurgical aspects of … Pontiac V-8 Engine Pearlitic Malleable Iron Crankshaft

1958-01-01
580013
PEARLITIC malleable iron crankshafts are being used in the new Pontiac engine as a result of recent developments. This paper discusses the physical properties of pearlitic malleable iron such as elastic modulus, fatigue endurance, and tensile strength. According to the author, definite machining economies result from using pearlitic malleable iron crankshafts.
Technical Paper

the effects of … Machine and Foundation Resilience and of Wave Propagation on the Isolation Provided by Vibration Mounts

1958-01-01
580054
THE effects on the transmission of vibration through isolation mounts of machine and foundation resilience, and of wave propagation are investigated. The prediction of the effectiveness of mounts is discussed, and curves are presented for estimating their effectiveness under certain conditions. A number of conclusions are drawn relevant to the problems of mount design and selection.
Technical Paper

the identification and characterization of RUMBLE AND THUD

1960-01-01
600015
SIMULTANEOUS RECORDINGS of cylinder pressure, audible sound, and crankshaft motion have shown that rumble is a noise associated with bending vibrations of the crankshaft. The vibrations are caused by abnormally high rates of pressure rise near the top dead center piston position. In this study the high rates of pressure rise were obtained by inducting deposits into the the engine. Thud is a torsional vibration of the crankshaft, similar in sound to rumble but resulting from much earlier occurrence of the maximum rates of pressure rise. Rumble vibrations consisted of a fundamental frequency of 600 cps and higher harmonics in the 11/1 compression ratio V-8 laboratory engine used in the investigation. The audible noise of rumble was predominantly composed of the second harmonic or about 1200 cps.
Technical Paper

the potential of Unconventional Powerplants for Vehicle Propulsion

1959-01-01
590039
COMPARISON of work capacity per unit mass and volume of different energy carriers shows that liquid hydrocarbons are superior to other energy sources. Solar and nuclear powerplants as well as their use in conjunction with a steam engine are examined in this paper. Suitability of an electric drive is discussed. Using a production 2-stroke diesel engine and its development forecast, a comparison is made of spark ignition, diesel, and gas turbine engines. The status of the free-piston engine turbine combination is reviewed.
Technical Paper

the use of Radioactive Tracer Techniques to determine the effect of operating variables on Eng ine Wear

1960-01-01
600035
RADIOTRACERS were used to study the wear effects of engine speed, load, jacket water temperature, fuel temperature, and chromium-plated rings in a medium-speed diesel engine. One distillate fuel and two residual fuels were tested. This paper describes the tests and their results. Some of the conclusions are: The brake thermal efficiency with high viscosity residual fuel was essentially equal to distillate diesel fuel over a wide range of loads, providing the residual fuel was heated to the proper temperature. Engine speed did not affect the wear rate of cast-iron rings when distillate fuel was used, while with residual fuel wear decreased with increased speed. With distillate fuel, engine load had essentially no effect on cast-iron ring wear. With residual fuel, decreasing engine load produced a marked increase in ring wear*
Journal Article

xD+1D Catalyst Simulation-A Numerical Study on the Impact of Pore Diffusion

2012-04-16
2012-01-1296
This paper presents a numerical study on the impact of washcoat diffusion on the overall conversion performance of catalytic converters. A comprehensive transient 1D pore diffusion reaction model is embedded in state-of-the-art 1D and 3D catalytic converter models. The pore diffusion model is discussed with its model equations and the applied diffusive transport approaches are summarized. The diffusion reaction model is validated with the help of two available analytical solutions. The impact of basic washcoat characteristics such as pore diameters or thickness on overall conversion performance is investigated by selected 1D+1D calculations. This model is also used to highlight the impact of boundary layer transfer, pore diffusion and reaction on the overall converter conversion performance. The interaction of pore diffusion and flow non-uniformities is demonstrated by 3D+1D CFD simulations.
Standard

xEV Labels to Assist First and Second Responders, and Others

2023-09-06
WIP
J3108
This recommended practice prescribes clear and consistent labeling methodology for communicating important xEV high voltage safety information. Examples of such information include identifying key high voltage system component locations and high voltage disabling points. These recommendations are based on current industry best practices identified by the responder community. Although this recommended practice is written for xEVs with high voltage systems, these recommendations can be applied to any vehicle type.
Technical Paper

xEV Propulsion System Control-Overview and Current Trends

2021-04-06
2021-01-0781
Propulsion system control algorithms covering the functional needs of xEV propulsion (‘x’ donates P0-P4 configurations) systems are presented in this paper. The scope and foundation are based on generic well-established HEV controller architectures. However, unlike conventional HEV (series, parallel and power split) powertrains, the next generation of integrated electric propulsion configurations will utilize a single micro controller that supports multiple control functions ranging from the electric machines, inverters, actuators, clutch solenoids, coolant pumps, etc. This presents a unique challenge to architect control algorithms within the AUTOSAR framework while satisfying the complex timing requirements of motor/generator-inverter (MGi) control and increased interface definitions between software components to realize functional integration between the higher level propulsion system and its sub-systems.
Technical Paper

µMist® - The next generation fuel injection system: Improved atomisation and combustion for port-fuel-injected engines

2011-08-30
2011-01-1890
The Swedish Biomimetics 3000's μMist® platform technology has been used to develop a radically new injection system. This prototype system, developed and characterized with support from Lotus, as part of Swedish Biomimetics 3000®'s V₂IO innovation accelerating model, delivers improved combustion efficiency through achieving exceptionally small droplets, at fuel rail pressures far less than conventional GDI systems and as low as PFI systems. The system gives the opportunity to prepare and deliver all of the fuel load for the engine while the intake valves are open and after the exhaust valves have closed, thereby offering the potential to use advanced charge scavenging techniques in PFI engines which have hitherto been restricted to direct-injection engines, and at a lower system cost than a GDI injection system.
Technical Paper

¼ Scale VehicleWake Pattern Analysis using Near-Wall PIV

2006-04-03
2006-01-1027
3-D Flow separations such as those that occur on the rear end of a vehicle have an impact on wall pressure distribution, hence on aerodynamic forces. The identification of these phenomena can be made through the analysis of skin friction patterns, which consist of the “footprints” of flow separations. These can be determined from qualitative and quantitative data obtained from near-wall PIV measurements. The wake flow of different configurations of a simplified 1/4 scale car model are analyzed. The influence of the slant angle and the Reynolds number on 3-D separated flow patterns and their induced pressure distribution is addressed, based on near-wall PIV, standard PIV and wall pressure measurements. This enables to understand how a topological change (the size or shape of a separation pattern) modifies the associated pressure distribution (therefore the drag coefficient). Finally, insights into instantaneous topology identification are presented.
X